Extraoral Projections

- Images can be produced in the dental office
- X-ray source can be
 - Intraoral X-ray machine
 - Combination Pan/Ceph
 - Medical
 - Dedicated Cephalometric machine

Film-Screen Combinations

- Used for extraoral radiographs to reduce both patient dose and time of exposure.
- Image quality is slightly reduced over direct film, such as intraoral projections
- Based on the ability of X-ray photons to cause fluorescence
- Screen film is sensitive to both x-ray photons and blue or green light. Dyes are included in film emulsions, making the emulsion sensitive to light emitted by the screens at a specific wavelength/color.

Film-Screen Combinations

- Fluorescence
 Certain materials fluoresce, that is, they absorb radiation and immediately emit light. The intensity of the light emitted depends on the intensity of the incident radiation. The photographic effect on the film, is the sum of the effects of the x-rays and of the light emitted by the screens. Light emission stops immediately when the exciting radiation stops. Fluorescence, as used in radiology, is thus the ability of phosphors to emit light when excited by x-rays.

Film-Screen Combinations

- Most of the image is produced by the visible light photons
- Faster screens reduce dose at the expense of image quality
- Size and shape of phosphor crystals in screens affect image quality
Film-Screen Combinations

- Screens and film must be matched
- Screens are used in pairs, as film is double-sided
- Three types of screens:
 1. **Standard** blue light-emitting calcium tungstate
 2. **Rare Earth** green light-emitting gadolinium or lanthanum
 3. **Combination**

Rare Earth Screens

Rare-earth compounds in these screens convert x-ray energy into image-creating light more efficiently than conventional blue-light-emitting screens, reducing radiation exposure to patients by as much as 50 percent.

Screen Selection and Application Guide

<table>
<thead>
<tr>
<th>Speed Classification: System Basics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed class</td>
</tr>
<tr>
<td>Required mAs change to produce similar densities (fixed kV + ffd)</td>
</tr>
<tr>
<td>Exposure alteration compared to class 100</td>
</tr>
</tbody>
</table>

Digital Image Receptors

- Storage Phosphors
- CCD/CMOS

Size of Image Receptors

- **Cephalometric and Skull views:**
 - 20x25 cm (8x10 inches)
- **Lateral Oblique views**
 - 13x18 cm (5x7 inches)
- **Panoramic views**
 - 12.7x30.5 cm (5x12 inches)
 - or -
 - 15x30 cm (6x12 inches)
Common Extraoral Views

Projection of the Central Ray

The central ray is directed perpendicular to the plane of the film in the horizontal and vertical dimensions from a source 91 to 102 cm (36 to 40 inches) away. The source should be coincident with the midsagittal plane of the head at the level of the bridge of the nose.

For cephalometric applications the distance should be 152.4 cm (60 inches) between the x-ray source and the midcoronal plane. This increased distance provides an resultant image with a broader gray scale of the patient.

Reference Planes

Posteroanterior View

- Indications:
 - Disease
 - Trauma
 - Developmental abnormalities
 - Growth and development

PA Ceph Projection

- The image receptor is placed in front of the patient, perpendicular to the midsagittal plane and parallel to the coronal plane
- The patient is placed so that the canthomeatal line forms a 10-degree angle with the horizontal plane and the Frankfurt plane is perpendicular to the image receptor. In the PA skull projection, the C-M line is perpendicular to the image receptor.
PA Ceph Projection

PA Projection

PA Landmarks

Lateral Skull View

• Indications
 – Trauma
 – Disease
 – Developmental abnormalities

Lateral Cephalometric Projection

• The image receptor is positioned parallel to the patient’s midsagittal plane. The side of interest is placed toward the image receptor to minimize distortion.
• In cephalometric radiography, the patient is placed with the left side toward the image receptor, and a wedge filter at the tube head is positioned over the anterior aspect of the beam to absorb some of the radiation and allow visualization of soft tissues of the face.

Lateral Cephalometric Projection

• Uneven magnification of left and right sides
• Structures close to the midsagittal plane (e.g., the clinoid processes and inferior turbinates) should be nearly superimposed.
Submentovertex View

- **Indications**
 - View base of skull, position of condyles, sphenoid sinuses
 - Fractures of the zygomatic arch (Jughandle View)

Submentovertex Projection

- **AKA Base projection**
Submentovertex Landmarks

Submentovertex Projection

Jug handle view

Submentovertex Jughandle View

Occipeto-Menton Projection
aka Waters View

• Indications
 – Evaluation of the maxillary sinus
 – Evaluation of the frontal sinus
 – View of orbit and nasal fossa

Occipeto-Menton Projection

• AKA Waters projection
• C-M plane forms ~37° angle with the image receptor

Occipeto-Menton Projection

Petrous ridge
Lateral Oblique Views

- Largely replaced by panoramic views
- Indications:
 - Position of impacted third molars
 - Fractures of the ramus, condyle, or body of the mandible (but not symphysis)

Lateral Oblique Projection

- The image receptor is placed against the patient’s cheek on the side of interest and centered in the molar-premolar area. The lower border of the cassette is parallel and at least 2 cm below the inferior border of the mandible. The head is tilted towards the side being examined, and the mandible is protruded.
- The central ray is directed toward the premolar-molar region from a point 2 cm below the opposite angle of the mandible.

Lateral Oblique Projection-Body

- Body of the mandible

Lateral Oblique Projection-Ramus

- Ramus
- Also known as Lateral ramus view

Reverse Towne View

- Indications:
 - Suspected fracture of the condylar neck
 - Shows posterolateral wall of maxillary sinus
Trans-cranial views

Trans-pharyngeal

Trans-orbital

Selection Criteria

Selection Criteria

Thank you!