Radiographic Interpretation: The Full Mouth Series and Panoramic Views

Steven R. Singer, DDS
srs2@columbia.edu
212.305.5674

"Give a person a fish; you have fed them for today. Teach a person to fish; and you have fed them for a lifetime"—Author unknown

Radiographs in Diagnosis

- Diagnostic imaging is an integral part of the diagnostic process in clinical dentistry.
- Radiographs are often obtained as part of a complete examination.
- Appropriate radiographic interpretation is used along with clinical information and other tests to formulate a differential diagnosis.

Caravaggio’s “The Tooth Puller”
The Diagnostic Process
- Chief complaint
- History of Present illness
- Medical History
- Clinical examination
- Diagnostic Imaging
- Further examination and testing
- Formulate a differential diagnosis

Quality of Image
- Is the radiograph of diagnostic quality?
 - Contrast and density
 - Region of interest (i.e., the lesion) clearly visible
 - Surrounding normal tissue (approx. 2-3 mm)
 - No geometric distortion

Quality of Image
- Do I need more radiographs?
 - Which one(s)
 - Periapical, Bitewing, Occlusal, Panoramic
- Shall I obtain prior radiographs?
- What is the expected diagnostic yield from the radiographs?

Viewing the radiographs
- Appropriate viewing conditions
 - Dimly lit room
 - Bright viewbox
 - Mask all extraneous light
 - Using a magnifying glass as appropriate

Use a systematic process
- Knowledge of normal radiographic anatomy is paramount
- Distinguish
 - Normal anatomy
 - Variations of normal anatomy
 - Pathoses
Use a systematic process

- Start with the anatomical landmarks
- View the radiographs in order through the quadrants from upper right through lower right
- Identify the normal anatomy such as the bones, canals, foramina, cortices, etc.
- Check for symmetry

Use a systematic process

- Go back to the first quadrant and look at the trabecular pattern. Is it:
 - Normal
 - Symmetrical when compared to the contralateral side
 - Sparse
 - Dense
 - In the direction of anatomical stress
 - Altered

Use a systematic process

- Check the height of the interdental bone
- Bitewings are the optimal projection for proximal bone heights
- Look at
 - Cortication
 - Bone height
 - Shape of the bony crest
Use a systematic process

Check the teeth
- Count
- Check enamel, dentin, and pulp
- Count roots
- Compare anatomy
- Check restorations (bitewings are optimal)

Count the teeth

Count the eyes =: -)
Check enamel, dentin, cementum, and pulp

Interpretation is an orderly process

From White and Pharoah, 4th edition

Why describe the lesion?

- The radiographic description can give us indications of:
 - Tissue of origin
 - Biological behavior
 - Prognosis
 - Treatment concerns
 - Diagnosis or a Differential Diagnosis

Paint a Picture with your Words
Describing the Lesion

1. Size
2. Shape
3. Location
4. Density
5. Borders
6. Internal Architecture
7. Effect on adjacent structures

1. Size
- Measure the lesion with a ruler. If you must estimate, use surrounding structures as your guide
- Measure in two dimensions, width and height in mm or cm, as appropriate

2. Shape
- Regular
 - Round
 - Triangular
 - Rhomboid, etc.
- Irregular shape
2. Shape

3. Location
- Is the lesion localized or generalized?
- Unilateral or bilateral
- Where is the lesion in relation to other structures and anatomic landmarks?
- Use terms such as:
 - Mesial, Distal
 - Inferior, Superior
 - Posterior, Anterior

3. Location
- If the epicenter of the lesion is above the mandibular canal, the likelihood is that the lesion is odontogenic in origin.
- Cartilaginous lesions are found nearer the condyles.
- If the epicenter of the lesion is in the sinus, it probably is not odontogenic in origin.
4. Density

- Is the lesion Radiopaque, Radiolucent, or Mixed Density
- Remember that opacity is relative to the adjacent structures.
- If the lesion is of mixed density, describe the appearance

5. Borders

- Well or poorly demarcated
- Punched out (no bony reaction)
- Corticated (thin opaque border)
- Sclerotic (wide, uneven opaque border)
- Hyperostotic (increased density of trabeculation)
6. Internal architecture

- Is the lesion uniform?
- Internal structures such as septae or loculations
 - Septae are bony walls
 - Loculations are individual compartments
- Tooth-like elements
- Radiolucent rim
- Use terms such as: cotton wool, ground glass, wispy, orange peel, etc.

7. Effect on adjacent structures

- Is the lesion causing:
 - Resorption
 - Displacement
 - Scallop
 - Effacement
 - Destruction
 - Space occupying lesions displace other structures
 - Remodeling
 - Expansion
 - Thinning/thickening
7. Effect on adjacent structures

- Space occupying lesions displace other structures

A Space Occupying lesion creates its own space by displacing other structures, such as teeth, maxillary sinus, inferior alveolar canal, etc.

- May cause neurological symptoms if the lesion closes foramina
7. Effect on adjacent structures
...when you have eliminated the impossible, whatever remains, however improbable, must be the truth.

Sir Arthur Conan Doyle, (Sherlock Holmes)
British mystery author & physician (1859 - 1930)

Take a deep breath and relax while I get the hell out of here.

Thank you!